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INTRODUCTION

IN THIS article we continue a study begun in [11] of the existence and dependence on the
parameter A of solutions of the system

LAyt = Aft(x,u) inQ, u*=0 onaQ, u* >0 inQ, (0.1)
w=1,...,k, whereu= (u!,...,ur), Q CR"is a smooth, bounded domain, and for each u
Lt = — i ak(x) o + i b¥(x) 2 + c#(x) 0.2)

o1 0 ax0x; im0 ax;

is a uniformly elliptic differential operator with Holder continuous coefficients, and ¢* = 0. It
is assumed that the map f:Q x Rf— R, given by f(x, w) = (f(x,w),.. ., f*(x,w))" is
continuous, that for each x € Q, f(x, .) leaves the positive cone of R* invariant, and that
f(x,0)# on Q.

The system (0.1) and the assumptions following form a natural analogue to the problem

Lu=Af(x,u) inQ, u=0 ondQ, u >0 inQ, (0.3)

where L is as in (0.2) and f: Q x R— R is continuous, cone preserving, and f(x, 0) > 0 for
x € Q. :

The problem (0.3) has been the object of considerable study, beginning with the paper of
Cohen and Keller [12] in 1967. (The results of [12] are also presented in [22], with some
additions and corrections.) Subsequently, the results of [12] have been extended in various
directions.

Initially, Cohen and Keller {12] developed a monotone scheme for finding the minimal
solution of (0.3), showed that the set of parameter values A for which such solutions exist is
an interval (0, A*) or (0, A*] (A* can possibly be +), gave estimates for A* in terms of the
first eigenvalue of related linear problems, and showed that solutions to (0.3) are unique in
case f is concave. Monotone methods such as those employed in [12] have been widely used
in the study of elliptic and parabolic problems; a unified treatment of such methods in a fairly
general setting is given by Amann in [3]. In [11], the authors of this article extended most of
the results of [12] to weakly coupled systems of the form (0.1). Similar results for an abstract
equation are given in [24].
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In the study of (0.1) and (0.3), the theory of linear eigenvalue problems plays a central role.
For a single equation, the necessary theory has been available since the late 1950’s; see [12].
For the system case, some results can be obtained from the general theory of positive operators
on ordered Banach spaces, as is done in [3]. However, for a problem such as

k
Lou® =2 2 m*¥xuf inQ
B=1 (0.4)

u=0 on dQ,

a=1,...,k,the theory of [3] requires m*¥(x) >0in Qforall @, =1, . . ., k. This condition
is too restrictive for our purposes; to avoid it in this paper and in [11], we have used the more
specialized but more delicate analysis of (0.4) begun in [20] and extended and developed in
[10].

For the case of concave nonlinearities, the results of [12] and [11] give a reasonably complete
theory for (0.3) and (0.1), rpcnpnfmplv The case of convey and/or asvmntotically linear
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nonhneantles 1s more comphcated, since multiple solutions may occur. A survey of much of
the theory for (0.3) is given in [25], along with a partial review of the literature. In the case
of convex nonlinearities, it is shown in [11, 12] that if A* is the upper endpoint of the interval
in A for which solutions exist, then A* is finite.

A number of the results which have been established for (0.3) in the convex case deal with
the question of multiplicity of solutions. Analogues to these results for (0.1) are the primary
concern of this paper. The first type of result giving multiple solutions asserts that if the
minimal solutions to (0.3) are bounded on (0, A*), then a solution exists for A = A* and at least
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Keener and Keller [21], Bandle [7], and Crandall and Rabinowitz [16]; see also the article of
Mignot and Puel [27]. In [21], the existence of multiple solutions for A € (0, A*) is obtained
by perturbed bifurcation theory; in [7, 16, 27] via arguments based on the implicit function
theorem. (A similar result using the implicit function theorem is given by Amann in [1] and
applied to the asymptotically linear case.) In such results it is necessary to obtain a priori
bounds on the minimal solution. In the present article we obtain results for (0.1) similar to
those found for (0.3). We obtain a priori bounds on the minimal solution via an adaptation of
the methods of [16], then use an abstract result given in [1] to obtain the existence of multiple
solutions. The methods of [16] must be modified somewhat as they involve the variational
characterization of eigenvalues, and for systems the requirement of a variational structure for
the nonlinearity imposes unreasonable restrictions; see the discussion in [13]. Several of the
results of [7, 16], and [27] depend on variational methods, and so do not extend readily to
systems where the nonlinearity is not a gradient. In [7] isoperimetric inequalities are used to
obtain a priori bounds; we have not attempted to use this approach for systems.

The second type of result on multiple solutions asserts that if all positive solutions to (0.3)
are uniformly bounded for A &€ [A;, A*] (A, > 0), then there exist at least two solutions for
A € [Aq, A"). These results differ from those discussed in the preceding paragraph by providing
specific information on the values of A for which multiple solutions exist. The existence of at
least two solutions for A in the interval [A;, A*) follows from topological arguments based on
degree theory or the fixed point index of cone maps. Such results are given in [1, 3, 17, 18,
26]. The same abstract results apply to (0.1), provided a priori estimates are available. There
are two cases which occur in the above-mentioned papers: superlinear and asymptotically
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linear nonlinearities. In the superlinear case, a priori estimates for solutions to (0.3) are derived
in [9, 18, 25] and for solutions to (0.1) in [13, 18]. These estimates hold for A € [,, 1*] for
any A; > 0; so we have at least two solutions for A € (0, A*). The estimate for (0.3) imposing
the weakest growth restriction on the nonlinearity is given in [18], but that result does not extend
easily to systems as it involves an antiderivative of the nonlinearity; such an antiderivative is
only available for systems where the nonlinearity is a gradient. We use the estimates of [13],
which extend to systems those of [9] and [25]. For the asymptotically linear case, a rather general
abstract theory is developed by Amann in [1] (see also [3]). For (0.1) to be asymptotically linear,
we must have

9—]%‘-26 M(x) asu-—>oo,

for some matrix M(x); to apply the results of [1] directly requires that

L,

L'M(x)(L = < L ), see (0.1)—(0.2))

k
be strongly positive, which requires in turn that each entry of M(x) be positive. To avoid this
restriction, we rework some of the analysis of [1] using results from [10] to replace strong
positively. In the asymptotically linear case, a priori bounds follow from the general theory;
they hold on [A;, A*] for any A; > A, Where A, is the first eigenvalue of the problem

Lu=AM@xu inQ

0.5
u=_0 ond 05)

where f,(x, u) — M(x) as u— . Hence (0.3) or (0.1) has at least two solutions for 4 € (A, A¥).
Such results for (0.3) are obtained in [1, 4]. Results implying the existence of exactly two
solutions on a subinterval of (1., A*) are given in [2, 5, 30]. They depend on the self-adjointness
of the problem (0.3), which does not hold in general for systems. In [17], some of the abstract
results of [1] are improved, and in [6] the case of (0.3) when f need not be positive is treated.

In this article, a treatment of both types of multiplicity results is given. We give the
topological arguments in Section 2, while in Section 3, we present the necessary a priori
estimates.

Various investigators have obtained results for (0.2) other than lower bounds on the number
of solutions. In [7, 8] estimates for A* and for solutions to (0.3) are derived; in [7, 16, 27] the
stability of minimal and other solutions to (0.3) (viewed as steady states of a parabolic equation)
is analyzed. We do not consider such questions for (0.1) in this article. Other estimates for
(0.3) or (0.1) are given in [14]. In[21, 23], it is shown that under appropriate hypotheses, (0.3)
cannot have three distinct solutions u;, u,, u; with 0 < u; < u, < u,. In Section 4, we extend
this result to (0.1), along with a uniqueness result for A € (0, A.)) in the asymptotically linear
case to (0.1). The corresponding result for (0.3) may be found in [4].

Study of (0.1) leads naturally to study of the multiparameter system

LAyt = A*fH(x,u) inQ
u* =0 on 3«2 (0.6)
u* >0 inQ,
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where L and f are as before. Corresponding multiplicity results for (0.6) are obtained in
Sections 2 and 3. In fact, much more is shown. As in [18], our multiplicity results for (0.1) are
given in terms of continua (closed connected sets) of solutions. In the case (0.6), these solution
continua will be of topological dimension at least k. We obtain this result via the fixed point
index and the global multidimensional implicit function theorem of Fitzpatrick, Massabo, and
Pejsachowitz [19]. (For a precise definition of topological dimension, see [19].) We also begin
an examination of another purely system phenomena that arises with the study of (0.6).
Namely, we give some results in Section 4 on the shape of the region A in the positive cone
in R* such that (0.6) has solutions for (11, . . . , A¥) € A. Our results are a natural start towards
deeper examination of the effects of convexity and coupling in (0.1) as well as (0.6). Finally,
we note that for the convenience of the reader, the various hypotheses to be placed on the
nonlinearity f as well as principal results from [11] are collected in Section 1.

1. PRELIMINARY RESULTS

1 3 101 ot - - piovwan memeslomaen bess ot et
Throughout this paper, we will not explicitly distinguish vectors from scalars by notation.

Which type of quantity a variable represents will either be stated or will follow readily from
context. In our analysis, we will make extensive use of the notion of ordering. Our notation
can best be described in terms of ordered Banach spaces. Let E be an ordered Banach space
with positive cone P; that is, let E be a real Banach space and let P C E be such that
R*PCP,P+PCP,and PN (—P) ={0}. Ifu, vEE,wewriteu=vifu~ v & P,andu > vif
u— v € P{0}, For Euclidean spaces R™ we take P = (R*)"; for function spaces (typically
Sobolev or Hélder spaces) we take P={u € E:u(x) =0 on Q}. We will also use a more
specialized notation: if u, v € C(Q), we will write u > v if u(x) = v(x) on Q, u(x) > v(x) on
0, ond (ufamy 2 (20/25) on 20 ¥ L, s TICUEN we witic wi v i W' 07 for ail
components of « and v. (Note that u > 0 does not imply u € int P, since we may have u = 0
on d€2. However, ifu > Oand v € [C(Q)]* with v = 0 on 9Q, then u + v > 0 if [jv]) is sufficiently
small. Since we will be dealing with Dirichlet boundary conditions, the notation “>" will be
quite useful.)

We are now in a position to collect the various hypotheses to be placed on the nonlinearity
f in this article. We will assume fis C?, but that is not needed for all the results. The reader
will find it convenient to refer to the following list while reading this paper:

(H1) f(x, .) : (R — (R*)*for all x € Q;

(H2) For each u €{1, . . ., k} there is a sequence vq, vy, ..., vyin{l,...,k} with vy=p
such that f*0(x,0) >0 for some x € Q, and if u: Q— (RY)* with u”i(x)>0 on Q for
j=0,...,J,J<N-—1, then f*+1(x, u) >0 for some x € Q;

(H3) f*(x, u) is nondecreasing in u” for v # u;

(H4) There is a constant K = 0 such that for all g, if w* = 4” =0 for v % u and u* = *,
then f#(x, u) — f*(x, @) = —K@Wu* — a@*); _

H5) Ifu=0,df%x, u)/ouf =0for o, = 1,...,k, forall x € Q;

(H6) If u> 0, f,(x, u) is a nonnegative irreducible matrix with

o
af (x;u)>0
fora=1,...,k du

[: 4

afe 3
(H7)5F(x,w)?f£*g(x,w’)forw»w’infoz,ﬁ=1,...k

E
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with strict inequality if o = f3;

(1) (

2fa k

s )

B.y=1

is positive semi-definite for x € Qandw=0,foreache=1,2,...,k.
Note. If f satisfies (H1)—-(H2) and (H5)-(HS), f is said to be convex.

This article is a continuation of the work begun in [11], and, as such, the results of [11] are
freely used throughout this paper. However, in order that this article be somewhat self-
contained, we list some of the significant results of [11]. (The reader should note that numbering
in this list is that of [11] and is not to be confused with that of the present article.) Proofs are
found in [11}. In what follows, A = {1 > 0: (0.1) has a solution u > 0}.

LEMMA 2.1 [11]. Let M(x) be a k X k matrix with m*” of class C*(Q) and m**(x) = 0 for all
x € Q. Let h: Q— (R*)* be of class C*(Q). Consider the system

Lu=AMu + h, xEQ

*
u=0, x €092, ©)
where .
L' 0 ul
L= . y U= : H
0 L* uk
and for each u, u* € C*+%(Q).
(i) Suppose there is xo € Q and u € {1, . . ., k} such that m**(x,) > 0. Then the system
Lv =AM, xeEQ
(")
v=0, x € o

has a smallest positive eigenvalue A, admitting a nonnegative solution v. Furthermore, if
A <Ay, (*) has a unique nonnegative solution for any 4 = 0. If A = A, (*) has no nonnegative
solution provided A#(x*) > 0 for some x, EQ, u=1,...,k.

(i) If, in addition, there is xo € Q such that M(x,) is irreducible and m**(xy) >0 for
u=1,...,k, (*) has a nonnegative solution for 4> 0 only in case A < A,. In this case, the
solution u is such that u > 0.

COROLLARY 2.3 [11]. Suppose that M has the form
MY 0 ... 0
0 M
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N
where M" is an r, X r, matrix satisfying the hypotheses of lemma 2.1 (ii) [11], with >, r,=k.
r=1

Let Ao(M?) denote the smallest eigenvalue of the system

L'w = AM"w (%)

where

L6Y+1 0

0

LY =
Los+ry
and
S, ={r~1

T2, if2<y<N
j=1

Then if A% *™ # 0 for some m € {1, . . ., k.}, (*) has a nontrivial solution u with
/u6y+1\
#0onlyif A <Ay(MY).
udy*iy
Furthermore, in this case, u®»*"(x) >0forx € Q,and m=1,. .. ) Py

THEOREM 3.1 [11]. Suppose that f(x, u) satisfies (H1)—~(H4). The iteration scheme

Ug =0
Luyyy + AKu, = A(f(x,u,) + Ku,) inQ (FHE)
Upp; =0 on 4%

produces a sequence which is increasing in each component. A number A > 0 belongs to A if
and only if the sequence {u,} is uniformly bounded; in that case, the sequence converges
uniformly to a solution u(A, x) of (0.1). The solution u(A, x) is minimal in the sense that
u(A, x) < u(x) for any other positive solution of (0.1).

THEOREM 3.3[11]. Suppose that f(x, u) satisfies (H1)-(H4), and A’ € A. Then 0,A)YC AL
Further, u(4, x) is strictly increasing in A. (It follows that A is an interval.)
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CoROLLARY 3.4[11]. Let A* = sup A. Suppose that f satisfies (H1)-(H4) and there exist a
function h:Q—> (R*)* and matrix M = (m"*(x)) satisfying the hypotheses of (i) of lemma
2.1[11] such that for each u, v with v =u =0, we have forx € Q, u=1,..., k, that
k
FiCe, u) + Kut < BH(x) + 2, m*(x)v” + Kok,
y=1

Then A* = Ay(M) where Ao(M) is the first eigenvalue for (**).

THEOREM 4.1[11]. Let f(x, u) satisfy (H1), (H2), (HS) and (H6), and let A* = sup A. Then
for each A € (0, A*), A < pu;(4), where pu;(A) = u,(f.(x, u(A, x))) is the principal eigenvalue of

L"/’ = aufu(xa y..(}w x))"p, X e Q
=0 X € 9Q.

CoROLLARY 4.2[11]. Suppose that f is convex. Then u;{A) is a decreasing function on A on
(0, A%), and, furthermore, u;(A) > A* > 4.

LemMA 4.3[11]. Suppose that f(x, u) satisfies (H1), (H2), (H5) and (H6), that A* <, and
there exists a constant M such that sugly_(/l, x)| < M for A € A. Then A* € A, and u(A, x) —
xeQ

u(A*,x)as A T A*.

2. MULTIPLICITY RESULTS

In this section, we give some results on the multiplicity of solutions for (0.1) and (0.6) in
the convex case. We begin with the following simple general observation, which follows as in
[1, theorem 4.1].

PROPOSITION 2.1. Let = = {(A, u) € [0, ©) X [C§(Q)]*: (A, u) solves (0.1) and u = 0}. Then =
has an unbounded component ¢ emanating from {(0, 0)}.

We now consider 6 in more detail in case f is convex.

LeEmMA 2.2. If fis convex and u(A) denotes the minimal positive solution of (0.1) for A € [0, A*)
(where u(0) = 0), then A—> u(A) is continuous as a map from [0, 1*) to [C§(Q)]*, where
O0<a<l.

Proof. From the proof of theorem 4.1 of [11], it suffices to_establish continuity from the
right. Suppose then that 0 < A" < A* and let u' = u(4'). Pick A € (', A*) and let u = u(4).
If A€ (A, A) and w = u(A),

Lw—u")=Af(x,w) — A f(x,u')
= @A = A)flx, u) + ALf(x, w) = fx,u)]

=@A-A)f(x,u')+ A[rfu(x, Ow+ (1 - 0)u') dBJ (w—u').
0
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By theorem 3.3 of [11], u' < w < 4. Since f is convex,

1
U Fulx, 8w + (1 - 0)u") dé)] (W —u'
0
<fulx, @) (w—u')
and A < A* < u,(A). Furthermore, [L = Af(x, 3)]7! exists as a compact positive operator on

[C§(Q)]*, which is continuously dependent on A € [A’, A] in the strong operator topology.
Hence

Osw—uw<@-A)L = AM(x, D)) - f(x, ).

Thus w— u’ in [Cy(Q)]* and hence via standard elliptic theory, in [C§(Q)]*, (as in [11]).

THEOREM 2.3. Suppose M < = and that f is convex. Then

(i) There exists an unique positive solution to (0.1) for 4 = A*.
(i) There exists ¢ > 0 such that

Lo =A"fu(x, u(A"))¢ inQ

$=0 on dg2. @D

Furthermore, A* is a simple eigenvalue of (2.1). _
(iii) There exists a neighborhood V of (A*, »(1*)) in [0, ©) x [C3**(Q)], € > 0; and a C?
map g-—> (l(ﬂ'\. ll((’f\\ from (-—FA £Y—> V anch that (270 11((\)) = (_2_*7 ;(}_*)) and cunh that

(A, u) € VN S implies (4, u) = (/1(’0), u(o)) for some o € (—¢,¢).

Proof. The existence of a solution of (0.1) for A = A* follows as in lemma 4.3 of [11]. Observe
that u(1) — u(A*) in [CF**(R)]* by lemma 2.2 and standard elliptic theory.

Define a map H:R X [C§+**(Q)]¥— [C3+*(Q)]* by H(A,u) = u— ALY (x,u). Note
that H,(4, u)w = w— AL"Yf,(x,u)w. Then H,(A*,u(A*)) is singular since otherwise the
implicit function theorem implies there exists A > A* such that (0.1) has a positive solution
for A = A.

If A <A*, uy(A) > A* by the convexity of f. Since u(A): [0, 1*] — [C3**(Q)]* is continuous,
it follows from [28] that u,(A) — u(A*). Hence A* < u,(A*) and thus A* = p,;(A*), since
H,(A*, u(A*)) is singular; (i) now follows from (H6) and results of [10].

If there exists u = u(A*) such that Lu = A*f(x, u),

L(u ~ u@A™)) = A*[f(x, u) — f (x, u(A))]
=3 ([ e 0wk - oy as| w-ue) @)
o
The maximum principle implies that u > u(A*). (2.2) is equivalent to
L(u — w(A*)) = A*f, (v, w(A*)) - (u — w(A*))
e[ e 0w (- 000 00 ] -GN} -0 @
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Convexity of f and u — u(A*) > 0 imply that the second term of the right hand side of (2.3) is
strictly positive, a contradiction to lemma 2.1 of [11], which establishes (i).

To see (iii), we apply the local inversion theory (theorem 2.1) of [1]. The Krein-
Rutman theorem implies the existence of a positive linear functional f* such that f* =
ALY (x, w@*)*f*, where (L7Y,(x, u(A*)) is viewed as a map on, say,
[C3(R)]* and (L7, (x, u(A*))* denotes the dual map. It follows from a simple computation
that if & € [C5**(Q)]* and [I — A*L7Y,(x, u(A*))lw = h, then f*h = 0. Furthermore,
the simplicity of A* guarantees that [C3*¢(Q)]F = (¢) @ im(I — A*L7Y(x, u(A"))).
Hence if w € [C3**(Q)]*, w is uniquely expressable as w = c¢ + r, where r€E
im(I — A*L7Yf,(k, u(A*))). Since ¢ > 0 and f* = 0, there is no loss of generality in assum-
ing f*(¢)=1. Thus f*(w)=cf*(¢)+f*(r)=c. Since weim(l - A*L Y, (x, u(A*)))
only if ¢ = 0, we see that

im(I — A* L7 (x, u(A*))) = {h € [CF = (Q)]F:f*h = 0}.
Furthermore,
Hy(A*, w(A®)) = —L7'f(x, u(A*)) = —u(A*)/A*.

Thus f*(H;(A*, u(A*))) # 0 and the conditions of theorem 2.1 of [1] are met. (jii) is now
immediate, and, in addition, if 0 = 0, A'(6) = 0 and A"(0) = —f*(L™Yf.u(x, u(A*))[¢]?)/
F*(u(A*)). This last expression is negative when, for example, f is strictly convex.

COROLLARY 2.4. If M < o, there is § > 0 such that if A € (A* — §, A*), (0.1) has at least two
positive solutions.

Let0 <A< A*andlet M; = sup{l]ull[cg(gz)]k: (u, u) € Z for some u = A}. We now have the
following global result.

THEOREM 2.5. Suppose that

(i) f is convex
(ii) M; < o for each A € (0, A*).

Then (0.1) has at least two solutions in € for each A € (0, A*).

Remark. The proof of this result is essentially the same as that of corollary 2.2 of [18]. However,
as we intended to give a several parameter extension of this theorem, we include a brief sketch
of the proof.

Proof of theorem 2.5. Let K = {u € [C}(Q)]*: u = 0}. Define ®(A, u) = AL (x, u).
Since f is convex, I — (8®/ou)(A, u(A)) is invertible by corollary 4.2 of [11]. Then
for A€[0,A%), there exists p(A)>0 such that ix(®(, .), 0,) =ix(4;, 0 =+1,
where 0; = {u € K:llu — u(d)| < p(A)} and A = u(d) + (B®/ouw)(A, uw(d) - (u —
u(A)) = u(A) + ALY, (x, u(A)) - (u — w(A)). (Here ix denotes the fixed point index in K; see
3,17, 18].)

Given ¢ > 0, (ii) implies that €, = {(4, u) € €: A = ¢} is a bounded set. Hence there exists |

a bounded set W C [, ) X [C}(R)]* such that 6, C W, W is open in [¢, ©) X [C](Q)]¥, and
w# O, w) for (A, w) € W - W. '
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Let W; = {w:(A, w) € W}. Then ix(®(A,.), W, N K) is constant for A = ¢. Since ®(4,.)
has no fixed points for A > A%, the constant is necessarily 0. If, then, for some A € [g, 1%),
®(A,.) does not have a fixed point u # u(A) with (4, u) € €, then W, can be assumed to be
a ball about u(A) and ix(®(4,.), W) N K) = ix(®(4,.), 0,) = 1, a contradiction.

CoROLLARY 2.6. If f is convex and M, < = for A, € (0, A*), (0.1) has at least two positive
solutions for A € [Ag, A7).

We next give an extension of theorem 2.5 to the multiparameter setting (0.6). Our principal
tool in this regard is the multidimensional global version of the implicit function theorem,
due to Fitzpatrick, Massabo, and Pejsachowicz [19]. This result relies on the concept of
complementing maps. For the sake of clarity, we pause briefly to recall portions of this theory
which are pertinent to our aims.

Let X be a real Banach space, m a positive integer and & an open subset of R™ x X.
Suppose #(A, x) = x — R(A, x), for (A, x) € &, where R:s{ — X is a compact, continuous
mapping. A continuous map g:s{ — R™, which maps bounded subsets of & into bounded
sets, will be called a complement for r:s§ — X provided that the Leray-Schauder degree
deg;s((g,7), &, 0), is defined and nonzero, where (g,7): d— R™x X is defined by
(g, )&, x) =(g(A,x), r(A,x)). We note that (g,r) is a compact perturbation of the
identity on R™ X X. The following result on complementing maps may be found in [19].

PROPOSITION 2.7. Suppose A9 € R™, ;= {x € X:(Aq,x) € &} and r;;: 4, — X is given by
724(x) = r(Ag, x). Then r: o — X is complemented by g: & — R™ defined by g(A, x) = A — A,
if and only if deg. o(r, .o, 0 =£0

We may now state the result we shall require.

THEOREM 2.8[19]. Let m, X, & and r be as in the preceding exposition. Assume that
g:4— R™ is continuous. Suppose that VC s is open and g:V—R"™ complements
r:V—X. Let K = ((g, r)|v)™! (0). Then there exists a closed, connected subset 4 of r~1(0)
whose dimension (see Section 2 of [19]) at each point is at least m, € N K # J, and at least
one of the following properties holds: (a) € is unbounded; (b) € N3ddA #I; (c) €N
{&, NTHONKY# 2.

Now consider (0.6). Let ¥ = {(A, u) € (R,)* x (C3(Q))*: (A, u) solves (0.6) and u = 0}.
For >0, let M,=sup{luljc@«: @ u)EY, A=(Ay,...,A), where 4,20 and
[A|R* = 7}

THEOREM 2.9. Consider (0.6). Suppose f is convex and that M, < = for v > 0. Then for each
A € int A, there exist at least two solutions of (0.6) in & with the property that ¥ has dimension
at least k at each of the solutions.

Proof. Let € denote the connected component of ¥ which contains (0, 0). Observe that
{(A, u(A)): A € int(R*)*} is a k-manifold which is necessarily contained in 4. (That such is
the case follows from the convexity of f and the implicit function theorem.) Let A, C int A.
To see that there exists a solution as required distinct from u(Ao), we argue as follows. Let



Positone problem for elliptic systems 837

0<t<|Ag Let T,={Ai€ (R,)*:|A] =1} Consider €, = {(A, u) € €:A€ T,}. Since
M, < oo, 4_is compact. Hence, as in the proof of theorem 2.5, we may choose W open in

x [CY(Q)]* such that €, C W and w # ®(A, w) for (A, w) € W — W. Again as in theorem
2.5, the fixed point index

ig(®(Ao,.), (W, NK) — @Ag)

is defined and nonzero. Hence if V is taken to be a bounded open subset of o =
W N {(int T,) X [C§(R)]*} such that V;, = W,, — B(u(A,); p(4¢)), proposition 2.7 guaran-
tees that g: V— R¥ given by g(A, x) = A — Ay complements ® on V. The result now follows
from Theorem 2.8.

3. A PRIORI ESTIMATES

In this section we give conditions under which solutions to (0.1) satisfy the a priori estimates
needed for the application of the results of section 2. All of our earlier assumptions on
f(x, u) remain in force. We begin with estimates of the type required in theorem 2.5 and
corollary 2.6.

Lemma 3.1. Suppose (H1) holds and for u=1, ...k,
. (fA(x, u)
lim (———T =00 3.1

Mo u

uniformly with respect to x € Q and u* = 0, v # u, and

lim (M) =0 (3.2)

|tt]-> o0 [ulﬂ

for B=(n+1)/(n—1). Then for each A€ (0, A*), we have M, = sup{lulc@y+:p= 42,
(4, u) €Z} <. If in addition f(x,u) is convex, theorem 2.5 applies and (0.1) has at
least two solutions in € for each A € (0, A™).

Discussion. This lemma is a slightly modified version of the a priori estimates obtained in the
proof of theorem 1 of [13]. The arguments in [13] give an extension to systems of the a priori
bounds obtained for a single equation in [9]. The key point is that for any A; € (0, A*), the
hypotheses (3.1) and (3.2) are satisfied by Af (x, u) uniformly for A € [A,, A*]. Hence we may
choose constants k¥ and C3%, with k” as large as desired, so that Af*(x, u) = kv’ — C},
and for any & > 0, we can choose Cj(¢) so that Af*(x, u) < &ul + C3(¢), for all 1 € [A,A%].
An examination of the proof of theorem 1 of [13] or theorem 2.1 of [9] shows that solutions
of (0.1) must satisfy an a priori bound depending only on k*, C}, C4(¢) forv=1,...,k and
on constants depending only on £, such as Sovolev embedding constants. Since these constants
may be chosen uniformly in A, the result follows.

If we impose some additional conditions on the domain @ and the system (0.1), we can
weaken the growth condition (3.1).

LEMMA 3.2, Suppose that for p =1, ..., k, we have L* = —A. Suppose that f = f(u), (H1)
and (H3) hold, and that at each point of dQ all the sectional curvatures of dQ are strictly
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positive. If f(u) satisfies (3.1) and

lim (lf (”)’> =0, (3.3)

lul—>o lu[y

where y < n/(n — 2) for n = 3, y < o for n = 2, then the conclusions of lemma 3.1 hold.

Discussion. Again, the lemma follows directly from the arguments used in theorem 2 of [13],
which extend to systems the estimates of [25] for a single equation. As long as A € [4, A*]
with 4, > 0, conditions (3.1) and (3.3) will be satisfied by Af(«) uniformly in A, so again the a
priori estimates can be made uniformly in A.

Remarks. In the case of a single equation —Au = f(u), there exists some a priori estimates
that permit the weaker growth condition

Hm M:Q

with < (n + 2)/(n ~ 2) for n = 3; see [18]. However, those estimates depend in part on the
existence of a primitive or antiderivative for f(u). In the case of systems the existence of an
antiderivative for f, i.e. the requirement that f is a gradient, imposes severe restrictions on the
form of the nonlinearity. This point and other differences between the scalar and system cases
are discussed in [13].

Lemmas 3.1 and 3.2 both require condition (3.1), which implies a type of superlinearity on

f. Another pocsibility is that f s asymptotically lincar, that i3, thuu vaiolo a waisia [y, =)
such that
Lim f,(x, w) = f,(x, ). (3.4)
W=

uniformly for x € Q. We will assume that fu(x, =) is nonnegative irreducible, with positivity
somewhere on the diagonal. In our analysis we will generally follow [1]. The structure of our
problem is more specialized than those considered in [1], but we cannot apply the results of
[1] directly since they require (in our situation) the strong positivity of AL™f,(x, u) and/or
AL7Yf,(x, ). However, we can use some of the results of [10] in place of strong positivity.
Since f,(x, ) is nonnegative irreducible with positivity on the diagonal, it follows from [10,
theorem 3.4], that the problem

Lw = uf,(x,°)w inQ

3.5
w=0 ondQ (3-5)

has a unique eigenvalue with positive eigenfunction. We denote this eigenvalue by A,. Our
analysis will be divided into two parts. First, we show that A, < A* and that if A, < A* then
all solutions of (0.1) are uniformly bounded for A € [Ay, A*] for any A € (Aw, A*). Second,
we obtain conditions under which A, < A*. In the first part we follow [1] rather closely; in the
second part the analysis requires more modifications.
To begin our analysis, we observe that (3.4) implies
lim (IL7f (x, w) = L7, (x, )ull/ud]) = 0. (3.6)

il
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where the norms are taken in [C3(Q)]*. This follows as in [1, lemma 7.4]. Since f is convex,
corollary 4.2 of [11] implies that A* <. Since X contains an unbounded component by
proposition 2.1, we choose (4, ;) €  such that [lu;]|— . {A} C[0, 1*] so we may assume
A;—>pu€[0,A*] as j—>ow. The convexity of f also implies f(x, u) < fu(x, =)
componentwise, so that for u = 0,

O0sf(x,u) =f(x,0)+ (J:f,,(x, tu) dt)u

< f(x,0) + f.(x, ©)u. 3.7
We then have

(/i) — L™ fu (x5 20) (s /)
= p[L71f(x, u;) — L7, (x, o0)u /|l (3.8)
+ (A — L7 e, u) /gl

Tt follows from (3.6), (3.7), and the boundedness of L™ on [C§(£)]* that the right side of
(3.8) tends to zero as j— . Also, since [[(w/Ju]) l|= 1 and LY, (x, ») is compact on
[C3(R)]* we may assume (/||uf) = k in [C§(22)]* and hence by (3.8) in [CE*(Q)]*, with
|2llic@yx = 1 and A = 0. Thus letting j — e in (3.8) yields & — uL7f(x, ®)h = 0 so that k
and p satisfy (3.5). Since h = 0, h # 0, we have u = A... Thus we see that A, € [0, A*]. Suppose
now that A, & [A, A,], and let T' = {(A, u) € 2:4 € [Ay, A} If I' is unbounded, we can
choose a sequence (i, u) € T with |ju]| — . But in that case we can argue as above and
conclude A, € [A;, A,], a contradiction, thus, I' must be bounded. Combining the above
arguments with corollary 2.6, we have the following:

LEMMA 3.3. If A, < A*, (0.1) has at least two positive solutions on (A, A*).

Proof. By the discussion above, if A, < A* then {(A, u) € Z:1 € [A(, A*]} is bounded
for all g € (A, A*¥); that is, M; <. By corollary 2.6, (0.1) has at least two solutions for
A € [Ag, A*). Since Ay € (A, A*) was arbitrary, (0.1) must have at least two solutions for
A€ (A, A%).

Remark. The arguments preceding lemma 2.3 are essentially those used in proving lemmas
5.2-5.5 of [1].

We now turn to the problem of finding conditions which imply A, < A*. The following
lemma will be useful:

LEMMA 3.4. Let M(x) be a k X k matrix of nonnegative continuous functions with M(x)
irreducible and having positive entries on the diagonal for some x, € Q. Then the problem
Lo =puM¢p inQ

3.9
¢=0 on 9€2 (3:9)
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has a unique eigenvalue u;(M) > 0 with eigenfunction ¢ > 0. Further, (3.9) may be rewritten
as ¢ = pu,L™'M¢ with L™'M interpreted as an operator on [C3(Q)]*, and there exists a
nontrivial nonnegative linear functional ¢* on ([C3(Q)]*)* such that

O" = m (ML M) 9 (3.10)
Finally, ¢* has the property that if b € [C}(Q)]* with b > 0, then (¢*, b)>0.

Proof. The first part of the lemma, that is, the existence and properties of u, and ¢, follows
from theorems 2.3 and 3.4 and lemma 3.1 of [10]. The argument in [10] is based partly on the
fact that L™'M viewed as an operator on [CJ(Q)]* is compact and positive. Thus the Krein—
Rutman theorem applies, which in turn gives the existence of ¢*. To see that (¢*, b) > 0 for
b>0, we argue as follows: since ¢* is nonnegative and nontrivial, there exists
a € [CY(D)]* with (¢*, a) > 0. We can approximate « as closely as desired with respect to the
[C3(R)]* norm with & € [C}(Q)]*, so (¢*, 3) > 0. We have (¢*, by =0 since b > 0. Suppose
(9", b) =0. Then (p*, b — ga) = —&(¢*,a) <0 for any &> 0. But for ¢ sufficiently small,
b—ea>0 so b—ed=0; hence (¢*,b— ed)=0, a contradiction. Thus we must have
(p*, b) > 0.

Remark. Lemma 3.4 gives precisely the results needed to replace the hypotheses involving
strong positivity of operators used in [1]. The existence of a smallest eigenvalue u,(M) >0
with nontrivial nonnegative eigenfunction does not require irreducibility on M; see [10,
theorem 2.3, corollary 2.4].

Let e = L™'1 where 1 is the column vector with all entries equal to 1. Then e > 0 and we
nave

LEMMA 3.5. Suppose that f(x, u) is asymptotically linear and there exists &o € R such that if
£e (R"* and [§] > &,

fx, &) = fulx, §)E < —g(x) € [C{(RQ)]*, (3.11)
where g = 0 and for some x; € Q, g*(xg) >0forpu =1, ..., k. Then there exists @ € R,e>0
such that for u = ae,

L7H(f (e, u) = fu(x, wu) <0. (3.12)

Discussion. This is essentially lemma 7.8 of [1]; the proof in our situation requires only minor
modifications.

LEMMA 3.6. Suppose that there exists é> 0 such that if (1, u) €S with A > 0, u=é, then
(3.12) holds. Then for (4, u) € X with >0 and u = &, u,(f,(x, w)) < A.

Proof. By lemma 3.4, there exists a nonnegative linear functional ¢* on [C3(Q)]*
satisfying ¢ = puy(fi(x, ) )[L™'f,(x, u)]*$* such that for b >0, (¢*, b) > 0. Since A, p) EZ,
(3.12) implies that if u > é,

G')u = L7, (x, wu <0. (3.13)
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Applying ¢™* to (3.13) yields

1
(3) 670 = (6%, L 1) <0
so that

1> 1 ] , AV o

Y T Y ERYY ( ﬂ'7u>:<_>< .L’u>—<L~1 u\ X, U * 'kau <0.

G -mgmmlen o= (Gen o - @ neware

Thus, since u = é > 0 we have (¢*, u) < 0 so that (1/A) — (1/u1(£.(x, u))) < 0 as desired.
The following is essentially theorem 5.10 of [1]:

LemMMA 3.7. Suppose that f(x, u) is asymptotically linear and there exists y > 0 such that if
u=ye, A>0, and (A, u) € Z, then A > py(fu(x, ). Then An < A*.

Discussion. The proof is essentially the same as that of theorem 5.10 of [1], which in turn
depends on lemmas 4.5 and 4.6 of the same article. Both of these results require strong
positivity of the operators analogous to L™, (x, u); however, all that is needed for the proofs
is the existence of an eigenfunction ¢ > 0 for L™Yf,(x, u), which follows from lemma 3.4.
Hence the analysis carries over to our situation.

We can summarize the above results in the following lemma:

LEMMA 3.8. Suppose that f(x, u) is asymptotically linear and satisfies hypothesis (3.11). Then
Aw <A™ and (0.1) has at least two solutions for A € (4., A*).

So far we have considered only a priori estimates on all solutions of (0.1) for some range of
A. However, theorem 2.3 and corollary 2.4 require only that the minimal solutions u, satisfy
an a priori bound. In some cases such bounds can be obtained when bounds for all solutions
cannot. In what follows we show how the methods of Crandall and Rabinowitz [16] can be
adapted to systems to yield such results. To apply the methods of [16], we must assume that
the operators L* on the diagonal of L have self-adjoint form; and we must also compare the
eigenvalues for certain symmetric problems to those from the original, nonsymmetric problem.
We will need the following lemma.

LEMMA 3.9. Suppose that M(x) and Q(x) are k x k matrices of class C', having the form

C R RS

with each block M*, Q* nonnegative in &, and irreducible with positivity on the diagonal at
some point in Q. Suppose that the entries in M and Q satisfy Q< My, o, f=1,... k. If

uq(M) is the first eigenvalue for (3.9) and A < (M), then the problem
Ly —-A0x)y =0 in Q
Y )y = oy (3.14)
P=20 on 42

has a positive smallest eigenvalue; the eigenfunction v is nonnegative and nontrivial.
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Proof. The existence of a positive smallest eigenvalue p,(M) for the problem Lu = pMu in
Q, u=0on 9%, follows from [10, theorem 2.3 and corollary 2.4]; similarly for u,(Q). By
lemma 2.1 and corollary 2.3 of [11], we see that if 1*(M) is the least upper bound of the values
of A for which Lu = A(1 + Mu) in Q, u =0 on 4Q, u> 0 in Q has a positive solution, then
A*(M) = uy(M). Similarly, A*(Q) = u(Q), and since Q.up < My, it follows by corollary 3.4
of [11] that u;(Q) = A*(Q) = A*(M) = puy(M). Hence if A < u,(M), then A < p,(Q). I N, > 1,
we can characterize y,(Q) by observing that the system Lu = uQu decouples into N, systems
of the form LYu = uQ"u, where LY represents the part of the matrix L corresponding to the
block Q. We may apply lemma 3.4 to the problem L'y = uQ%u and assert that for each Y,
there is a positive smallest eigenvalue u,(Q") with eigenfunction ¢”> 0. Hence if u is an
eigenvalue of Lu = puQu, then it must also be an eigenvalue for L'u = uQ"u for some y;
similarly, if we take u = ¢? in the components corresponding to Q" and zero in all other
components, we obtain an eigenfunction for Lu = uMu with eigenvalue p,(QY). Thus, u,(Q) =
min{u,(QY), . . ., #:1(Q"2)}, so A < u,(Q) for all y. We can rewrite (3.14) as

(LF - 20%)pP=0oy? inQ, PF=0 onoQ, pB=1,...,N,. (3.15)

Again, if each of the problems in (3.15) has a positive first eigenvalue op, then the first
eigenvalue for (3.15) is given by op = min{0;, ..., oy} > 0. Since A < u,(QF) for each B,
(3.16) may be rewritten as

YP = o(LF - 20P)y# (3.16)

where (L — AQP)~1 is a positive, compact operator. (This follows from lemma 2.1 of [11].)
Thus, if L# ~ 10P has a positive spectral radius. (3.16) has a nositive first eigenvalne by the
Krein-Rutman theorem, so that (3.14) does, also. Thus it remains only to show that the spectral
radius of (Lf —AQP)™" is positive. The problem [If — u(QP)Qflp=0 in Q, ¢=0 on
9Q has a solution ¢ > 0, so (L — A0P)p = (u,(QP) — 1) 0P . Letting k = (u,(QF) — 1)0P¢,
we have £ =0 and h(xg) > 0 for some x, € Q via the hypotheses on Qf. Thus ||| >0 in
[C3(Q)]%s (where QF is a ky X ky matrix). Since ¢ 3 0, it follows that for some & > 0

O<scech<g¢=(LF-A10F)h (3.17)

Applying (Lf — A0P)~! to (3.17) and using (3.17) again, we obtain
0<e’h=<e(lP —AQP) th<(LF - AQF)2h, (3.18)
so proceeding in this way we obtain by induction 0 < g™ < (Eb — AQP)"™h so that £"|h| <
|(L# — AQP)™™h|, and hence in [C§(Q)]*# we have e"]h| < ||(Lf - AQPY=|IA|l. Since ||| >0

we have &™ < [|(LP — A0P)™||s0 0 < e < [|(L# — AQP)~™||. Hence (I# — AQP)~! has a positive
spectral radius, which is the result we need to complete the proof.

We can now describe how the methods of [16] may be extended to systems. We must assume
that the operators L* have variational form, that is, for y=1,... , k,

L'w= —.i (a};(x)wxi)xj +c’(x)w (3.19)
) i,j=1
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with a of class C'*¢, and a,, = a],, We must also assume that f(x, u) is convex and of class
C2 Fmally, suppose there exists a k X k matrix G(x, u) of class C' such that the entries of G
satisfy

0=sGulx,u)< fﬂ (x,u) foru=0 (3.20)

G, ©
(" 6
0 Gy

with each of the matrices Gy(x, u) symmetric, and irreducible with positivity on the diagonal
at some point of Q provided u > 0.

The idea of the analysis is to use the variational characterization of the first eigenvalue oy
for (L — AG(x, u;))w = ow together with the conclusion of lemma 3.9, which implies o, > 0,
to obtain an identity which can yield estimates on u,. Under the above hypotheses, we have

where G has the form

LEMMA 3.10. Suppose that the operators LY satisfy (3.19) and that (3.20) holds. If ¢(u) =
col(p'(u), . . . , 9*(u)) satisfies ¢(0) = 0 and is of class C', then for A € [0, A*) and u = u; we
have

k

k
Zf [2 S el tusad, + 9767w | o

a,B 11/—

SRp: 5, 69,100 (69| (3.21)

Qaf—l

Proof. By corollary 4.2 of [11], A < u,(fu(x, u;)) for A €[0, A*) when f(x, u) is convex.
Thus, by (3.20) and lemma 3.9, we have o > 0 where o is the first eigenvalue of

[L—AG(x,u;)lw=0ow inQ, w=0 ondQ. (3.22)

The hypotheses on L and G imply that if G(x, u,) is viewed as a function of x, then (3.22)
has a variational structure; so ¢ can be found by minimizing the expression

k

E= f ( [ E ajwiwl, + c”w”w”] > G“ﬂ(x,_m)w‘”wﬁ> dx
y=1Li,j=1 w,B=1

over w € [Wh2(Q)]* with|[w|| = 1. Since 0 > 0, we have E = 0 for any w € [W§2(Q)]*. Letting

w = ¢(u;) yields (3.21).

We can obtain another identity which, when combined with (3.21), may yield a priori bounds
on u; by multiplying (0.1) by an appropriate vector and integrating by parts. Suppose that
PY(u) = col(yi(u), . . . , Y*(u)) is of class C! with 1(0) = 0. Taking the scalar product of (0.1)
with y(u) and mtegratlng by parts using the divergence theorem yields (since a¥ = af)

Z (5 3 ettt + Puyho) o

g La= 1ij=1

) L [ﬂ% WP () £, u)] dx (3.23)
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If we have u = u,, we can combine (3.21) and (3.23) to get an inequality free from derivatives
of u provided we have

k n k n
> > agzpﬁau,‘f‘.ufi = > > a}}«,i));a(/)psu,‘fiugj. (3.29)
@, f=1ij=1 a,B,y=1ij=1

In general we have little information on u,; so we will want to choose v and ¢ so that for
EERM E=(E)a=1,...,k;i=1,...,n, we have

k n k n
Y 2 alylelrEl= Y Y alpleplsEED. (3.25)
o, B=11ij=1 a,B,y=114j=1

Suppose Y¥(u) = Yp*(u®), ¢*(u) = ¢*(u*), = 1,...,k; then voe=0if f#a; Yo% =
(¥*)', and similarly for ¢*. Thus (3.25) becomes

i ;> vk /> \
* @\’ N Y 11 = @)r]2 3821
2 (2 afErer) = 2 (07T ( 2 afsrer). (3.26)
Thus, (3.24) holds in this case provided
@) =", a=1,....,k (3.27)

which is precisely the vector analog of a condition used for a single equation in [16].
Suppose now that (3.24) holds. Letting u = u, and combining (3.21) and (3.23) via (3.24)
yields

a,f=1

k k
a1 Syftar=i] S Greer ax
QIS=1 Q
k k
" f > cPybufdr— | S cB(¢P)? dx. (3.28)
q B=1 o F=1

Inequality (3.28) is fairly general; to obtain estimates from it we must put conditions on fand
then choose y and ¢ carefully. For a single equation, various special cases are treated in [16];
we will examine the system analogues to some of those.

Suppose that f*(x, u) has the form

Fo(x, u) = g*(x)(u*)"= + h*(x, u) (3.29)

with m,>1, g*(x)>0 on Q, and f(x,u) satisfies the conditions following (3.19). Let
mg§ = min(m,); then m§ > 1. We will assume that for some & > 0 we have for all o

|he(x, u)| < C(1 + |u|m5~9%) (3.30)
and for all &, B

=0 (3.31)
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Let G* = m,g*(x)(u®)™="" and G** = 0, & # B. Then (3.20) holds. Let ¢*(u) = (u*)/~ and
Yo (u) = [j2/(2 e — 1)](@*)%«"1 so that (3.27) holds. Then (3.28) will be satisfied for u = u;;
so when u = u;,, we have
k 9
Ja ; -
A E [___,] e (Qgtmy—1) dx
2 er, -l
k

= E muga'(ua')(Zjﬂ,ﬂ-ma,—l) dx
o =1

k
— 2 c“(u“)zfn dx
Q =1

k v}
+| 2 [——19’-———] [cu? — AR®)(u®)%e"1 dx (3.32)
Q =1 2]&' - 1

k
If we set W= 2, g*(u®)@*me~1 we see that (3.30) and the fact that m,>1 for all «
a=1

imply that the first term on each side of (3.32) is of order 1 in W and the remaining terms are
of lower order. If m, > [j%/2j, — 1] for all & and we restrict A to, say, [A*/2, A*), then (3.32)
implies a bound on W, uniform in A € [A*/2, A*). As discussed in [16], the relation between
m,, and j, can be satisfied if m, — (m% — my)V2 <j, <m, + (m% — m,)"? or equivalently
2o+ me— 1< m[2+2Vy, + 7,], where v, = 1 — (1/m,). The bound on W implies a bound
on |u%| in LP(Q) with p= 2j,+ m,—1, so for any my<m§ we can bound [u] in .
[LPo(Q)]%, where po=mg[2 + 2V, + y,] with yo=1— (1/mg). Let My = max(m,). By
(3.30) we can bound ||f| in [LPo/M0(Q)]¥, since |f] < K(1 + [u|*). We may now use the usual
bootstrap process as discussed in [16]: we obtain a bound for 1 in [W7o/*0(Q)]* via (0.1) and
the standard elliptic a priori estimates; the Sobolev imbedding theorem then implies a bound
for u in [LP1(Q)]* for any
Py < n(po/M,)
' [n = 2(po/Mo)Y’

which then yields a bound for fin [L?1/Mo(Q)]*, and so on. This process eventually yields a
bound for u in [W?(Q)]* with 2p > n so that W*?(Q) imbeds in Cy(Q) provided

i ol
2{ =) > —|= )
<Mo> n[l <Mo ; (3.33)
see lemma 1.17 of [16]. The imbedding then gives a bound for u = u in [C%(Q)]*if A € [A*/2,
A*). For A€ [0,A%/2), 0=y, < SUp'Lyejz5 SO it follows that
M= Sup{]iﬂlll[cg(é)]k A E [0, )\.P)} < 00,
Inequality (3.33) combined with the bound for possible values of p, gives the inequality

[2 + 2V, + 7ol
(My—1)

n<2mg (3.34)
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(recall yo = 1 — (1/my)), which reduces to the bound on n obtained in [16] for a single equation
with similar nonlinearity provided m, = m{ = M, for all .

We summarize the above analysis in the following:

LEMMA 3.11. Suppose that L satisfies (3.19), that f satisfies (H1), (H2), (HS) and (H6), is
convex, and has the form (3.29), and that (3.34) holds. Then M = sup{|luallicyayx A €
[0, A%)} <o, s0 by corollary 2.4 there exists § > 0 such that for A € (A* — 8, A*), (0.1) has at
least two positive solutions.

Remark. Condition (3.34) is in a sense a growth condition on f. The condition can be satisfied
in some cases where the growth hypotheses of lemmas 3.1 and 3.2 do not hold. Thus we can
assert local existence near A* of two solutions in some cases where we do not know if there
are two solutions on [0, A*). For example, if n =3, my,= 5 and M, = 6, then (3.34) holds but
the growth conditions on fin lemmas 3.1 and 3.2 fail.

The inequality (3.28) can yield estimates on u, for various types of nonlinearity. The difficulty
is in making the correct choices of G, v, and ¢. The hypotheses of lemma 3.11 are not the

only ones which can be used. For example, we may replace the assumptions (3.29), (3.30),
with

foeu) = g*(x)™)™ + h*(x, u) (3.35)
and

[R%(x, )| < glul™ + C(1 + [ulm=%) (3.36)
where m >1, 6 > 0, and the remaining assumptions previously imposed on f and A® are still

in force. Again, let G** = mg*(x)(u*)""!, ¢* = (u*)/ and 9* = [j2/(2j — 1)]@*)%"1.
Then for u = u,, (3.28) yields

k .2
J e
A 2[: ]aua2]+m1dx
N (u®)
k
= Z mg®(u®)¥+m=1 dx
o a=1

o =1

k
— 2 cw(ua)zj d.x
Lo} =1

]‘2 @ . 4 w\2j—
+jg [(2],_ 1)][c AR (u®)¥ ! dx (3.37)
Using (3.36) we have

f ha(uaf)Zj—l dx < Ef lu[2j+m-—1 dx
Q Q

+ cf (L + =) w41 d, (3.38)
Q
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k

Let go= min{g*(x): xEQ, a=1,...,k}>0, and let V= 2, g*(x)(u®)¥*"~!, Then V=
. a=1]

k

i k 2/p
go 2 (u®)¥+m=1 Also, as in [15, p. 63], we have |u|> < k(P‘Z)/P[ (u“)”] , so that
a=1 1

o=

k (r=2p
b < k02 3 ey < () (3.39)
a=1 8o

Thus, (3.37), (3.38) and (3.39) (with p = 2j + m — 1) yield

’1[(2;'].i 1)] [1 * %Wﬂ L v

=Am f V dx + lower order terms (3.40)
Q

where the lower order terms can be estimated in terms of the integral of V!~ for some o > 0.
Then (3.40) yields a bound on V and hence on ||u] in [L¥*"~}(Q)]* if

[(2]']‘i 1)][1 * £<k_2%n0;3)ﬁ>] <m (3.41)

holds. But (3.41) is satisfied if j2/(2j—1) < m and ¢ is sufficiently small. Arguing as in the
discussion leading to lemma 3.11, we see that M < o so we can apply corollary 2.4 provided
that

2m[2 + 2Vy + v]
<
(m-1) 7~

where y =1 — (1/m), and ¢ is sufficiently small. (The size of & depends on m, k, and gj).
Thus, the methods of [16] apply when there is coupling in the terms involving the highest
powers of u® occurring in the nonlinearity, provided the coupling coefficient is sufficiently
small. Other structures for the nonlinearity may also be treated by these methods; for example
the case of exponential nonlinearities for a single equation is discussed in [16]. We shall not
attempt to make an exhaustive investigation of the circumstances under which the methods of
[16] apply; the methods are rather flexible and appear to depend somewhat on the ingenuity
of the investigator in choosing G, ¥ and ¢ and in estimating the terms occurring in (3.28).

(3.42)

4. QUALITATIVE PROPERTIES OF THE SOLUTION SET

In this section we prove some qualitative results about the solution set to (0.1). These
include upper bounds on the number of solutions for given A in certain situations and a
description of the region in parameter space for which solutions exist in the multiparameter
case.

First, let us impose on f(x, u) the following weakened version of (H7):

of *(x,u) _ of*(x, v)
auP T ouf

Ifu>v=0,thenforallea, FE{1,..., klandx € Q, (4.1)

with strict inequality for some oy, By € {1, ..., k} and x, € Q.
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We have the following:

PROPOSITION 4.1. If f(x, u) satisfies (H1), (H2), (H5), (H6) and (4.1), then (0.1) cannot have
three solutions u; > u, > u,; > 0 for fixed A.

Remark. This theorem is an extension to the case of systems of results obtained for a single
equation in [21], [23].

Proof. Let
fule, d.w) = [ fulo, 9+ (1= )
0

so that f(x, ¢) — f(x, ¥) = fu(x, ¢, ¥)(¢ — ¥). Suppose that us > u, > u; > 0 with uy, u,, u;
solutions of (0.1) for some fixed A. Let wy = u, — uy, w, = u3 — u,. We have w,, w, >0, and

antiafuing
SAISIYiNE

Lwy = Afu(x, uz, us)w; inQ

(4.2)
w; =0 on a2
and
Lwy = Af,(x, us, uy)w, inQ
(4.3)
Wy = 0 on aQ
s Arvarm hermnthoonn A B A S T YA I3 ST, S VR U S SUUMR DU S T TS IS T o T
N aay pesswAsLSs Soaa fy JUNIYY VYY) VY[ ) SRR J sy W gy MV S QAW ARG EGELY U AL A VARULAUIW VYL iJUDlLlVlL)’

on the diagonal on Q, so by lemma 3.4 we have w;, w, > 0. Since fu, < tu; and (1 — Hu, <
(1 — Hu, for t€ (0, 1), it follows from (4.1) that at least one entry of f,(x, us, u,) is strictly
larger than the corresponding entry of f,(x, u,, u;). Thus [f,(x, us, u;) — fu(x, Uy, u))]w, is
nonnegative and nontrivial. Combining (4.2) and (4.3) yields

L(wy — wy) = Af,(x, us, up)(w, — wy)
+ AL (x, uz, uy) = fx, up, uq)]wy (4.4)

It follows from (4.3) and the fact that w, > 0 that A is the principal eigenvalue for the system
(4.3); so since [ f,(x, us, uy) — fu(x, uy, u;)]w, is nonnegative and nontrivial, it follows from
lemma 2.1 of [11] that (4.4) has no nontrivial nonnegative solution. But then 0 = w,(xg) —
wi(xg) = us(xo) + ui(xo) for some x, € Q, contradicting the hypothesis that u; > u; > 0; this
contradiction proves the result.

Remark. The result is false if we eliminate the irreducibility hypothesis. Suppose that f(x, u)
and A are such that the scalar equation —Au = Af(x, u) in Q, u =0 on 3Q, has solutions u;
and 4 with & > u, > 0. (Sufficient conditions for this are derived in Sections 2 and 3.) Consider
the uncoupled system

—Aul = Af(x, u')
~Au? = Af(x,u?) inQ 4.5)
(u',u*)=(0,0) onaQ.
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The system (4.5) has solutions of the form (u;, 4;), (&, u;), (4, &), and (&, i). Since (&, i)
> (4, 4) > (ua, u) =0, the theorem fails in this case.

We now consider the asymptotically linear case. Suppose that f (x, ) is asymptotically linear
and satisfies the conditions imposed at the beginning of this section. Suppose also that f (x, u)
is convex.

PROPOSITION 4.2. In the asymptotically linear case, the only solution to (0.1) for A <A, is u;,
the minimal solution.

Remark. This result is similar to proposition 3.2 of [4].

Proof. Suppose A < A, and v # u, is a solution to (0.1). Then v > u,. Also, we have
L(v = u3) = Mu(x, v, u2)(0 — uz).

Since v — u; >0 and f,(x, v, u;) is nonnegative irreducible, it follows that v — 1, > 0. By
hypothesis, f(x, 1) is convex and asymptotically linear, so f,(x, tv + (1 — H)u,) < f,(x, =) entry
byentry. Thus, L(v — u;) < Afu(x, @) (v — u;)s00 < v — 1, < AL7'f,(x, ©)(v — ;). By lemma
3.4, there exists ¢* € ([C3(Q)]¥)* such that [L™'f,(x, ®)]*¢* = (1/A.)¢* and (¢*, u) >0 if
u> 0. Thus we have 0 < (¢*, v — w;) < Mo*, L™, (x, ©)(v — up)) = (A/A){¢*, v — u;). But
A/A. <1, s0 thisis impossible. Hence (0.1) cannot have any solution other than the minimal one
in the asymptotically linear case when A < A..

As noted in Section 2, our results extended to the multiparameter setting (0.6). In the case
of a single parameter, A is either (0, A*) or (0, A*] depending on the particular nonlinearity f
involved. However, in the multiparameter case, A should be a region in the positive cone of
R*. Interesting questions now arise concerning the shape of this region. We conclude our paper
with a brief examination of some of the basic features of the set A in the multiparameter case.
Our principal observation is contained in the following lemma.

LEMMA 4.3. Suppose (H1)-(H4) hold. Consider the system

LAu# = A*f*(x,u) inQ.

ut >0 in €2 (4.6)
ut =0 on 982,
p=1,...,k Let Adenote the set{(A!,...,A%): 4*>0,u=1,...,k,and (4.6) has solution

us> 0} Thenif A=(11,..., 1) =A,and0<A<i,A€A.
Proof. Suppose 0 < A < 1. Note that a solution to (4.6) at A is equivalent to a solution of
Liut =cf(x,u) inQ,u=1,...,k

uz0 inQ 4.7
u=0 on 482,
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where
k i B y
c= ( > (xﬂ)2> and fA(x,u) = —fx, ).
pu=1

Let i = u(A,x) denote the minimal positive solution to associated with 4, and, as in theorem
3.1 of [11], let ug =0 and u, be given by the iteration scheme

(L +cK)uyyy = c(fx, u,) + Ku,). 4.8)

As is shown in [11], A € A provided the iterates of (4.8) are bounded above. But notice
d—uy=0andif gz~ u,=0,

(L* + cK)(@* — ub, ) = AFfi(x, 4) + cKa* — c(f*(x, u,) + Kut
= AMfE(x, d) = of * (x, u,) + cK(@* — ut)

A FUCw 7N o FUle 2 A\ IS 2 IETAN
YA A ) T A, Uy ) ) T R U Uy

i

v
)

k4

and, hence, the result follows.

COROLLARY 4.4. Suppose (H1), (H2), (H5) and (H6) hold. Then if A and 1 are as in lemma 4.3,
u(A, x) < u(4, x).

Proof. Let y = min{A!, ..., A*}. Then y > 0 and for u=1,...,k, one has
LNy 1) — u'A, X)) = 257 (x, u(A, x)) — ART (X, WA, X))
= Y(f“(x, L"-(”L x)) —f“(x, .L_L.(/‘"a x))

Since A < 4, there is at least one y € {1, ..., k} for which the above inequality is strict, and,
hence, for this u, u#(4, x) < ut(A, x). It now follows that

L(u(k, ) = u(, %)) = v[f(x, u(X, x)) = f(x, w2, x))]
_— ’y[flfu(X, G_L_t_(/{,x) + (1 - 6)_14(},,,\:)) d@:l . (E(/{,X) _ g(k,x))
0
By (H6) and the fact that u(A, x) >0 and u(A, x) > 0,

U: Fulx, Ouh, x) + (1 = 8)u(A, x)) de]

is irreducible for x € Q. Since u(, x) = u(A, x) and u(4, x) — u(, x) # 0, irreducibility implies
that u(A, x) » u(A, x).

COROLLARY 4.5. Suppose (H1), (H2), (HS) and (H6) hold. Let 0 <A € A and let
#1(A), > 0 be the unique number such that

Ly = .U'I(A)()" - fulx, .Li(}v:x))llf in Q
P =0 on Q2

(4.9)
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has a solution 9 > 0. If A’, A" € A and 0 < A’ < A", then p,(A") > u4(A"). In particular, if

L= A" fu (x, (A", )y (4.10)
where ¥ > 0 and y|,o =0, then (I — A’ - L™, (x, u(A’, x))) " exists for any A’ € A for which
0 < Al < A"' .

Proof. The result is an easy extension of corollary 4.2 of [11]. Suppose v is a solution of
(4.9) corresponding to A = A",
Then

Ly = pA)A - fu(x, A, x)))w
+ p(AMA" - fu(x, w(A", x)) — A - fu(x, w(A', %))y (4.11)

Since (H5) holds, A’ < A", and u(A’, x) < u(A", x), the last term of the right-hand side of (4.11) is
nonnegative and trivial. Hence the positivity lemma of [11] implies p(A") <u,(4").
If (4.10) obtains, u;(A") =1 and hence u;(A')>1 for any A' € A with A’ <A". Hence
I—A-L7%,(x,u(A', x)) is invertible.

We are now able to establish our main result on this topic. Namely, A is a continuous
deformation of the intersection of the unit sphere and positive cone in R*. Furthermore, in
case f is convex and A is closed, if one component of the tuple (A, . . .,A,) € A increases,
the other components necessarily decrease. For the sake of simplicity, we will prove the result
only in the case k = 2.

Observe that the statement (uy, u,) is a solution to (4.6) for (4, A,) is equivalent to the
statement that (u;, u,) is a solution to

L'u! = ucos(zzE - t)fl(x, ul, u?)
| (4.12)
L*u? =y sin(% - t)f2(x, u', u?).

for some >0 and t € (0, 7/2). Let

12y = cos(/2 — O)f(x,u', u?)
filx, ul, u?) (Sin(n/.z—t)fz(x’ul’”z))

and define

w*(®) = A*(f,) = sup{A > 0: Lu = Af,(x, u) has a positive solution}.

THEOREM 4.6. Consider (4.12). Assume f satisfies (H1), (H2), (HS) and (H6). Then
u*: (0, m/2) — (0, ) is continuous. If, in addition, fis convex and

(u* () cos(/2 — ), w* (D) sin(/2) — 1)) €A,
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for t € (0, 7/2), then ¢ < ¢’ implies

1 (f) cos(m/2 — £) < u*(t') cos(w/2 — t')

while

p* () sin(/2 — £) > p*(¢') sin(r/2 — t').

Proof. Let t,€0,7/2). Consider (u*(to)cos(m/2) — to), w*(to) sin(w/2 — tg)). If ¢ <t,

lemma 4.3 implies that p*(f)sin(m/2 — 1) = p*(f) sin(x/2 — ty) and u*(z) cos(:w/2 — f) <
p*(to) cos(mw/2 — tg). Similarly, if >4, p*()cos(w/2 — 1) = u*(to) cos(m/2 — t;) while
w*(t) sin(mw/2 — 1) < u*(to) sin(7/2 — t5). Hence pu*(f) cos(xr/2 — £) —> u*(to) cos(m/2 — t,) and
p*(t) sin(w/2 — ) — u*(ty) sin(w/2 — t,) as t— t,. Thus

(W (D)2 = (" (9)? cos’(/2 = 1) + (u* (1)) sin* (/2 — 1)

—> (u*(20))? cos™(7/2 — tg) + (u*(2p))? sin(7/2 — tg) = (1*(t))?.

\Us s \

Thus p*(£) — pu*(to) as t— t,. That the above inequalities are strict in case fis convex and (u*(f)
cos(7/2 — 1), p*(2) sin(z/2 — 1)) € A for ¢ € (0, 7/2) is a consequence of corollary 4.5 and the
continuation arguments of Section 2.
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